Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virol J ; 20(1): 286, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049805

RESUMO

Zika virus (ZIKV) and dengue virus (DENV) share a lot of similarities being both phylogenetically closely related, share the same insect vector passage for reaching the host, affinity for the same carbohydrate receptor domains (CRDs), indicating feasible competition between them on the natural field. Here, we prospected interactions of both envelope proteins with a DC-SIGN, a transmembrane c-type lectine receptor with the most implicated CRD with the Flavivirus infection presents on dendritic cells involved in viruses replication processes into the host, and among rares CRD receptors susceptible to interacting with a broad of subtypes of DENV. Protein-protein docking procedures produced structures for molecular dynamics experiments, suggesting the most energetically favorable complex. The difference found in the deltaG results prompted the experimentation with molecular dynamics. To investigate further specific residues involved with such interactions we produced a decomposition analysis using molecular dynamics of the docked proteins evaluated afterward with the Generalized Born Surface Area method. Solvent-accessible surface area (SASA) analysis for both showed very similar but with a slight reduction for ZIKV_E, which agreed with residues SASA analysis highlighting regions more exposed in the ZIVK protein than in DENV. Despite residues PHE313 is reponsible for most of the interactions with the envelope of these arboviruses, ZIKV interacted with this residue in DC-SIGN with lower energies and using more interactions with not expexted residues GLU241 and ARG386. Taken together these results suggest better competitive interaction of ZIKV with the DC-SIGN receptor, particularly in the CRD portion.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Simulação de Dinâmica Molecular
2.
Nat Commun ; 14(1): 4413, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479700

RESUMO

The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Humanos , Vírus Chikungunya/genética , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...